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Abstract: Cellular senescence, a cell state characterized by a generally irreversible cell cycle arrest, is
implicated in various physiological processes and a wide range of age-related pathologies. Oxidative
stress, a condition caused by an imbalance between the production and the elimination of reactive
oxygen species (ROS) in cells and tissues, is a common driver of cellular senescence. ROS encompass
free radicals and other molecules formed as byproducts of oxygen metabolism, which exhibit varying
chemical reactivity. A prerequisite for the generation of strong oxidizing ROS that can damage
macromolecules and impair cellular function is the availability of labile (redox-active) iron, which
catalyzes the formation of highly reactive free radicals. Targeting labile iron has been proven
an effective strategy to counteract the adverse effects of ROS, but evidence concerning cellular
senescence is sparse. In the present review article, we discuss aspects of oxidative stress-induced
cellular senescence, with special attention to the potential implication of labile iron.
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1. Introduction

Cellular senescence, or simply senescence, is a cell state characterized by a generally
irreversible growth arrest, driven by a variety of signals, including telomere shortening,
oncogene activation, mitochondrial dysfunction, and reactive oxygen species (ROS) [1–4].
Senescent cells display higher levels of macromolecular damage, altered metabolism, and a
specific secretory phenotype [1–4]. This fundamental biological process has several ben-
eficial functions for the organism, as it prevents the propagation of unwanted cells, and
triggers their clearance by the immune system [2,5]. However, excessive accumulation
of senescent cells within tissues and organs contributes to tissue dysfunction, inflamma-
tion, and tumorigenesis in aged organisms [2,3,6]. Therefore, unveiling the underlying
mechanisms that determine senescence initiation and establishment is of the utmost clini-
cal importance.

ROS are common drivers of cellular senescence. Excess ROS can oxidize all essential
macromolecules (DNA, lipids, proteins) and impair lysosomal and mitochondrial func-
tion [7–9]. These effects are common features of cellular senescence. It has to be emphasized,
however, that ROS is an umbrella term for a group of molecules with varying chemical
reactivity: some are strong oxidizing agents, and some are not [10]. A requirement for the
generation of extremely damaging ROS is the availability of labile (redox-active) iron, which
catalyzes the conversion of relatively weak oxidants to highly reactive free radicals [11].
Thus, the diminution of labile iron may reduce their generation and their subsequent
adverse effects. In the present review article, we focus our interest on the underlying
mechanisms that contribute to ROS-induced cellular senescence. Special attention is given
to the potential role of labile iron in this process.
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2. Oxidative Stress
2.1. Oxygen: A Double-Edged Sword for Aerobes

Molecular oxygen (O2) makes up approximately 21% of the air in Earth’s atmosphere.
Its appearance roughly 2.4 billion years ago allowed the emergence and expansion of
complex eukaryotic life. In aerobic cells, O2 is reduced to water in electron transport chains
(ETC), producing large amounts of energy. In animal eukaryotic cells, ETC is located in
mitochondria and the electrons for O2 reduction derive from catabolic reactions.

Although O2 is indispensable for aerobic beings, its unavoidable metabolic byprod-
ucts can react with various substances within the cells such as DNA, proteins, lipids, and
carbohydrates, and oxidize them [10]. In such a hostile environment, aerobes survive only
because during their long evolution they have developed efficient reducing defenses [12].
The continuous generation of these O2 metabolites—widely known as ROS—is counterbal-
anced by their elimination [10]. However, under certain circumstances, this equilibrium
can be shifted in favor of the oxidants, disrupting cellular and, by extension, organismal,
homeostasis. This state, defined as oxidative stress, has been implicated in various human
diseases [10].

2.2. ROS Generation and Regulation
2.2.1. ROS Generation

The majority of O2 consumed in eukaryotic cells is utilized in mitochondria to produce
chemical energy. Complex IV (also known as cytochrome c oxidase), the last e nzyme
in the respiratory ETC, transfers four electrons from cytochrome c to O2. This concerted
tetravalent reduction converts O2 to water without the formation of reducing interme-
diates that could cause collateral damage and generates a proton gradient in the inner
mitochondrial membrane that is used to drive ATP synthesis. However, a small amount of
O2, even under normal conditions, undergoes partial reduction to produce ROS such as the
superoxide anion radical (O2

•−), which is usually the first ROS to be formed, as well as
hydrogen peroxide (H2O2), and the hydroxyl radical (HO•) (Figure 1A). These byproducts
of the normal metabolism of O2 exhibit different chemical reactivity. Particularly, O2

•− and
H2O2, which represent the one- and two-electron reduction products of O2, respectively,
are moderately reactive and can interact with a limited number of cellular molecules [10].
On the contrary, HO• is regarded as the most reactive oxidant produced in vivo and it
can oxidize indiscriminately, with high rate constants, most, if not all molecules in living
cells [11]. HO• is mainly produced in biological systems by the reaction of H2O2 with
ferrous iron ions (Fe2+) through the Fenton reaction (see Section 2.3) [11,13,14].

The generation of the aforementioned intermediates of incomplete O2 reduction within
cells can be facilitated by various intrinsic factors [10]. Mitochondria are considered a major
intracellular source of ROS [15,16]. Electrons can leak from ETC (mainly complex I and
complex III) and generate O2

•−, which can subsequently produce other downstream
ROS [17]. Under normal conditions, mitochondria produce low amounts of ROS; however,
dysfunctional mitochondrial are often associated with excessive ROS generation.

NADPH oxidase 2 (Nox2) is another major source of cellular ROS. This membrane-
bound enzyme complex is found in phagocytes, cells that constitute our first line of defense
against invading pathogens [18]. When activated, phagocytes exhibit a marked increase in
O2 uptake called the respiratory burst. Nox2 reduces O2 and releases high amounts of O2

•−.
Superoxide dismutases (SOD) can convert O2

•− into H2O2, which is further converted to
hypochlorous acid (HOCl) in a reaction catalyzed by myeloperoxidase (MPO). While these
reactive species are essential for effective antimicrobial defense, they unavoidably cause
collateral damage to neighboring cells.

Except for Nox2, other members of the NOX family occupy different cellular localiza-
tions and generate low amounts of ROS associated mainly with cell signaling [19]. ROS
are also generated by a variety of other oxidases prominently present in different cellular
compartments [10]. Reduced oxygen intermediates can be also derived from interactions
with environmental factors called the “exposome”, which include drugs, toxicants, pollu-
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tants, nutrients, physical stressors (e.g., ionizing radiation), and psychological stressors
(lifestyle) [10,20].

Antioxidants 2023, 12, x FOR PEER REVIEW 3 of 23 
 

 
Figure 1. Generation of ROS and lipid peroxidation products. (A) The majority of O2 consumed in 
eukaryotic cells is reduced safely to water (H2O) by the enzyme cytochrome c oxidase in the res-
piratory ETC, without causing collateral damage. However, a small amount of O2, even under 
normal conditions, undergoes partial reduction to produce superoxide (O2•−), which is usually the 
first ROS to be formed. O2•− is rapidly converted to hydrogen peroxide (H2O2) by superoxide dis-
mutase (SOD), while the generated H2O2 is further converted to H2O through the action of cat-
alases (Cat), glutathione peroxidases (GPx), and peroxiredoxins (Prx). Alternatively, in the pres-
ence of available ferrous iron ions (Fe2+), H2O2 is reduced non-enzymatically by one electron, pro-
ducing the highly reactive HO•. O2•− and H2O2 are moderately reactive and can interact with a lim-
ited number of cellular macromolecules. On the contrary, HO• is highly reactive and it can oxidize 
indiscriminately, with high rate constants, most, if not all molecules in living cells. (B) Lipid-
derived reactive species are generated through lipid peroxidation when reactive species attack li-
pids and especially polyunsaturated fatty acids (PUFA). The process begins with the incorporation 
of O2 and the generation of lipid hydroperoxides (ROOH). Oxidation of PUFA to ROOH can pro-
ceed either enzymatically by lipoxygenase (Lox) or non-enzymatically when a PUFA is oxidized 
from a free radical (X•) to a lipid peroxyl radical (ROO•) which subsequently attacks an adjacent 
PUFA. ROOH are relatively unstable and can be reduced to their corresponding innocuous alco-
hols (ROH) via the glutathione peroxidase 4 (GPx4). Yet, when ROOH levels elevate and Fe2+ is 
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Figure 1. Generation of ROS and lipid peroxidation products. (A) The majority of O2 consumed
in eukaryotic cells is reduced safely to water (H2O) by the enzyme cytochrome c oxidase in the
respiratory ETC, without causing collateral damage. However, a small amount of O2, even under
normal conditions, undergoes partial reduction to produce superoxide (O2

•−), which is usually
the first ROS to be formed. O2

•− is rapidly converted to hydrogen peroxide (H2O2) by superoxide
dismutase (SOD), while the generated H2O2 is further converted to H2O through the action of
catalases (Cat), glutathione peroxidases (GPx), and peroxiredoxins (Prx). Alternatively, in the presence
of available ferrous iron ions (Fe2+), H2O2 is reduced non-enzymatically by one electron, producing
the highly reactive HO•. O2

•− and H2O2 are moderately reactive and can interact with a limited
number of cellular macromolecules. On the contrary, HO• is highly reactive and it can oxidize
indiscriminately, with high rate constants, most, if not all molecules in living cells. (B) Lipid-derived
reactive species are generated through lipid peroxidation when reactive species attack lipids and
especially polyunsaturated fatty acids (PUFA). The process begins with the incorporation of O2

and the generation of lipid hydroperoxides (ROOH). Oxidation of PUFA to ROOH can proceed
either enzymatically by lipoxygenase (Lox) or non-enzymatically when a PUFA is oxidized from a
free radical (X•) to a lipid peroxyl radical (ROO•) which subsequently attacks an adjacent PUFA.
ROOH are relatively unstable and can be reduced to their corresponding innocuous alcohols (ROH)
via the glutathione peroxidase 4 (GPx4). Yet, when ROOH levels elevate and Fe2+ is available,
extremely potent alkoxyl radicals (RO•) are generated, capable of oxidizing new PUFA, and producing
damaging end-products of peroxidation. The figure was partly generated using Servier Medical Art,
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

Reactive species are also generated through lipid peroxidation, a process under which
highly reactive radicals such as HO• attack lipids, especially polyunsaturated fatty acid
(PUFA) side chains [21]. The process begins with the incorporation of O2 and the generation
of lipid hydroperoxides (ROOH), a reaction that can proceed either enzymatically or non-
enzymatically (Figure 1B). In the first case, PUFA serves as a substrate for lipoxygenase
enzyme (LOX), which forms hydroperoxyl groups (ROOH) at the carbon position of allylic
chains. In the second case, a reactive free radical, such as HO•, which is mainly generated
through Fenton-type reactions, abstracts a hydrogen atom from a methylene (-CH2-) group,
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forming a carbon radical. These reactions are favored in bis-allylic positions; that means,
the more double bonds, the more oxidizable the PUFA. The most likely fate of a carbon
radical is to react with O2, generating a peroxyl radical (ROO•). The latter, if not scavenged,
attacks an adjacent fatty acid side chain, generating a new carbon radical, which can, in turn,
react with O2,propagating lipid peroxidation chain reactions, while ROO• itself abstracts a
hydrogen atom to form a lipid hydroperoxide (ROOH). ROOH are not highly reactive and
can be safely reduced to their corresponding innocuous alcohols via glutathione peroxidase
4 (GPx4), an enzyme that acts on peroxidized fatty acids located within membranes and
lipoproteins. Yet, like H2O2, if ROOH levels elevate and Fe2+ is available, highly reactive
alkoxyl radicals (RO•) are generated. The latter are extremely potent species, capable of
oxidizing new PUFA, amplifying the lipid peroxidation process. The continued production
of lipid ROO• and RO•, and their decomposition to produce end-products of peroxidation
(such as isoprostanes, malondialdehyde, and 4-hydroxy-2-nonenal) have detrimental effects
on cellular membranes and play a critical role is cell death pathways including apoptosis
and ferroptosis [22–24].

2.2.2. Protective Mechanisms

It is obvious from the above that aerobes live in an extremely unfriendly oxidative
environment and survive only because they contain efficient reducing systems. The main
cellular defense against oxidants is a network of enzymes that catalytically reduce relatively
weak O2-derived intermediates to less reactive or innocuous molecules [25]. Particularly,
SOD is highly efficient in reducing O2

•− to H2O2, which is converted to water through
the action of catalases (Cat), glutathione peroxidases (GPx), and peroxiredoxins (Prx)
(Figure 1A). Moreover, small antioxidant agents synthesized by aerobes, such as the
tripeptide glutathione (GSH) which serves as a substrate for GPx, can be oxidized by
reactive species, protecting, in this manner, more important cellular biomolecules [10].
However, some reactive species, such as the HO• and RO•, are very strong oxidizing
agents. Once generated, they react very quickly with almost any molecule that happens to
be in their immediate vicinity and oxidize it. It follows that it is unlikely to be eliminated
by endogenous or exogenous scavengers (antioxidants) garnered from the diet [26]. On
the other hand, enzymatic defense systems or agents that control the formation of such
reactive species seem to be much more effective. Reducing enzymes, as mentioned above,
act in concert to prevent the generation of reactive free radicals such as HO· and RO·

(Figure 1A,B). The sequestration of metal ions, particularly iron ions, is also of major
importance for preventing their generation. For instance, proteins such as transferrin
or ferritin that bind iron in the circulation or within cells, respectively, keep this metal
ion in a redox-inactive state. In this way, they minimize their ability to participate in
reactions that generate damaging free radicals (see Section 2.3) [11,14]. Notably, diet—and
especially the Mediterranean type—contains a plethora of bioactive compounds with iron-
chelating capacity, which, when they reach the cell interior, protect cells against oxidative
stress [26–32].

2.3. Labile Iron and Its Key Role in ROS-Induced Toxicity

Iron is an essential trace element for almost all living cells and organisms. It is utilized
as a cofactor of numerous proteins and enzymes that support important biochemical func-
tions, including O2 transfer, DNA repair, and energy production [11,14,33,34]. Although
vital, iron is at the same time a potential pro-oxidant, as it serves as the major catalyst for
the generation of reactive free radicals through Fenton-type reactions. During Fenton-type
reactions, peroxides, relatively weak oxidants, convert to extremely potent free radicals
such as HO• and RO• (Reactions (1) and (2)).

Fe2+ + H2O2 → Fe3+ + HO• (1)

Fe2+ + ROOH→ Fe3+ + RO• (2)
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For this reason, mammals are equipped with sophisticated mechanisms which tightly
regulate iron homeostasis, so they can fulfill their metabolic needs for iron and minimize
its toxic effects [11,14]. Thus, the hepatic peptide hormone hepcidin coordinately controls
systemic iron levels, while iron-regulatory proteins 1 and 2 (IRP1 and IRP2) regulate
cellular iron levels [11,34]. Moreover, most of the body’s iron is kept in a redox-inert
state: circulating iron is tightly bound to the iron carrier transferrin, while most of the
intracellular iron is well protected in the active sites of enzymes, or safely stored within
cytosolic ferritin [11,33].

However, a small fraction of the total intracellular iron is accessible to peroxides
and contributes to the generation of extremely reactive free radicals via Fenton-type re-
actions [35,36]. This fraction is known as labile iron, and its molecular nature is one of
the most obscure facets in iron biology. Due to its dynamic nature, the determination and
precise quantification of labile iron has been an obstacle, and for a long time there was a
controversy about the existence of a pool of free intracellular iron. Although hard to define,
labile iron is usually defined as the iron that: (i) is redox-active, (ii) can be sequestrated by
weak iron chelators, and (iii) has a transitory nature, as it is destined for storage, export, or
metabolic utilization [36].

Free radicals generated via Fenton-type reactions are highly reactive and short-lived;
thus, they attack and oxidize chemical groups in the vicinity of their formation. Hence,
iron-binding sites on macromolecules are particularly sensitive to oxidation and serve
as centers for Fenton-type reactions [37]. Therefore, sites that are prone to oxidation can
fluctuate according to the levels of labile iron: when labile iron increases, more sites may
become susceptible to oxidation; on the contrary, when it decreases, iron moves away from
these sites, making them resistant to oxidation.

2.4. The Pleiotropic Effects of ROS on Normal Proliferating Cells

Cellular responses to ROS depend on the nature, the level, and the duration of the
stimulus, as well as the cells’ ability to cope with the oxidants to which they are exposed
(Figure 2). To survive in such oxidative environments, cells have evolved sophisticated
mechanisms to regulate ROS. Yet, although extremely important, these mechanisms cannot
eradicate them. However, as it turns out, this is not a flawed outcome of the evolutionary
process. Basic steady-state levels of ROS, and especially H2O2 via reversible oxidation of
specific protein targets, can regulate signaling pathways (redox signaling) implicated in
various physiological processes, such as cell proliferation, differentiation, migration, and
angiogenesis [10]. The maintenance of a state of low ROS levels which plays useful roles is
defined as “oxidative eustress”, from the Greek word eu, which means “good” [10,38]. In
line with this essential role of ROS as physiological signaling agents, cells usually respond to
moderately elevated ROS levels by improving reducing defenses, which help cells to defend
against the insult and survive in the new environment (adaptation or hormesis) [10,12].

However, elevated levels of ROS can cause damage to all essential macromolecules,
impairing cellular function and leading to various pathological conditions. This state is
referred to as “oxidative distress” [10,38]. Excessive amounts of ROS trigger cell death by
regulated pathways (e.g., apoptosis, ferroptosis) or, in more extreme conditions, necrotic cell
death. Senescence, a permanent arrest of cell proliferation, can be also triggered by elevated
ROS. Senescence appears to lie between adaptation and cell death, as it is often associated
with survival but also with permanent structural and functional changes. Subsequent
sections describe the mechanistic aspects of oxidative stress-induced cellular senescence
with an attempt to unveil the putative role of labile iron in this cellular process.
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Figure 2. Cellular responses to oxidative stress. Free radicals and other reactive intermediates
formed as by-products of cellular aerobic metabolism are continuously generated by endogenous
or exogenous sources and eliminated by reducing defense systems. At low steady-state levels, by
oxidizing specific targets, ROS regulate signaling pathways implicated in various physiological
processes. It follows that defense systems coordinately attenuate ROS to minimize oxidative damage,
whilst permitting enough to remain to fulfill useful roles (eustress). However, deviation from this
steady state leads to unspecific oxidation, disrupting redox signaling and/or causing macromolecular
damage (distress). Depending on the severity of the damage, cell responses can range from permanent
growth arrest (cellular senescence) to programmed cell death (apoptosis or ferroptosis), or in more
extreme conditions, necrotic cell death. Adaptive responses that modulate ROS levels and counteract
damaging effects can also be elicited.

3. Cellular Senescence
3.1. A Brief Historical Overview and Some General Aspects of Cellular Senescence

Cellular senescence is a fundamental biological process, mainly characterized by a
prolonged and generally irreversible arrest of cell proliferation. It was originally described
six decades ago when Leonard Hayflick and Paul Sidney Moorhead showed in their seminal
paper that normal diploid cells isolated from human fetuses gradually lost their ability to
divide in vitro, despite the presence of ample space, growth factors, and nutrients in the
culture medium [39]. Notably, the non-dividing cells remained alive and metabolically
active over a long period until the eventual degeneration of the culture. This phenomenon
was termed senescence, from the Latin word senex, which means “growing old”, as the
authors assumed that it could play a causal role in organismal ageing. The underlying
molecular explanation came a few decades later with the discovery that permanent cell cycle
arrest is the result of telomere attrition [40]. Telomeres—from the Greek words telos (end)
and meros (part) [41]—are the terminal chromatin structures that mask the natural ends of
eukaryotic chromosomes and protect them from degradation and fusion [42,43]. However,
the DNA at the very end of a linear chromosome (that is, the telomere) cannot be fully
copied during replication. This phenomenon, commonly referred to as the “end-replication
problem”, was observed in 1972 by James Watson [44]. At nearly the same time, Alexei
Olovnikov first postulated that due to their incomplete replication, telomeres progressively
becoming shorter with each cell doubling, and when this shortening reaches some threshold
value, cells stop dividing and senesce [45]. For a long time, there was a controversy about
whether telomere shortening and senescence had any relevance to organismal ageing or
whether they were just a tissue culture phenomenon. This changed abruptly during the
past few decades, as several studies in humans have shown that telomeres shorten with age,
and shortening is associated with increased mortality risk [43,46–48]. Similarly, research
in animal models revealed that short telomeres led to ageing-associated degenerative
defects and loss of organismal viability [49–51], while telomere elongation delayed normal
ageing [52].

Moreover, it became clear that apart from telomere attrition, several diverse signals
can elicit senescence phenotypes. For instance, various stressors including oxidants, geno-
toxic agents, hypoxia, and aberrant activation of oncogenes trigger premature senescence,
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usually in the absence of telomere shortening [1,2,53]. Besides, the role of senescence has
recently expanded beyond the contexts of telomere attrition or stressful insults, as cells
with senescent features have been identified during embryogenesis, to particular transient
anatomical structures, and during specific time windows of development in evolutionary
distant organisms ranging from mammals to fish [2,54].

Conceivably, senescence as a stable growth-arrest program has evolved as a mechanism
to prevent the propagation of unwanted cells and also to trigger their clearance by the
immune system [2,5]. During development, senescence regulates embryonic growth and
patterning [2,54], while in adulthood, senescence counteracts the uncontrolled growth of
damaged cells and is a crucial barrier against cancer progression. Within this framework,
senescence represents a beneficial response, essential for maintaining tissue homeostasis.
Yet, senescent cells are not inert; they remain alive for prolonged periods and release
factors that can harm neighboring healthy cells and the very cells that produce these factors.
Accordingly, the accumulation of senescent cells within tissues and organs—when the
immune system fails to efficiently remove them or when senescence persists—contributes
to tissue dysfunction and gives rise to pathological manifestations, organ ageing, and
age-related diseases [2,3,6,55,56]. Comprehensively, senescence is implicated in several
physiological functions, but also in a wide variety of age-related pathologies, and displays
beneficial effects as well as detrimental consequences on organismal health, depending on
the context.

3.2. Features of Senescent Cells

A prominent feature of senescent cells is the irreversible growth arrest (Figure 3), which
is largely mediated through either one or both the p53/p21 and the p16Ink4a/pRB signaling
pathways [1,57]. Both pathways involve multiple upstream regulators and downstream
effectors, and cross-regulate each other [58]. In addition, to some extent, they respond to dif-
ferent stimuli; DNA-damaging signals such as oxidants, and oncogenic or genotoxic stress,
largely trigger senescence via the p53/p21 axis [57]. Upon entering senescence, cells display
an abnormally enlarged and flat morphology with an increase in the cytoplasm-to-nucleus
ratio. Moreover, they exhibit deregulated metabolism and accelerated accumulation of dam-
age to DNA, proteins, and lipids (Figure 3) [59–61]. Last, but not least, senescent cells adopt
a hyper-secretory phenotype, known as the senescence-associated secretory phenotype
(SASP) (Figure 3) [1,57]. The exact composition remains elusive and varies significantly [62];
however, the SASP mainly includes proinflammatory cytokines, chemokines, angiogenic
factors, matrix metalloproteinases, and ROS. Although SASP facilitates tissue homeostasis,
when chronic, it mediates the pathophysiological effects of senescence; by acting in an
autocrine or paracrine mode, the secreted factors reinforce and spread senescence, promote
persistent chronic inflammation, stimulate tumorigenesis, impair the function of stem and
progenitor cells, etc. [1,57]. This explains why senescent cells, although present in relatively
low numbers in vivo, have such devastating consequences.
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4. Intracellular Damage in Oxidative Stress-Induced Cellular Senescence: Is
Iron Involved?

A well-known feature of cellular senescence is its intimate association with macro-
molecular damage: various damaging insults signal cellular senescence, while the ac-
celerated accumulation of macromolecular damage is an almost universal hallmark of
senescent cells [1]. The senescent state is also characterized by an altered metabolic profile.
Lysosomes exhibit progressively deteriorated function and accumulate lipofuscin, a non-
degradable aggregate of intracellular catabolism [5]. Lysosomal dysfunction attenuates
mitophagy (a mitochondrial quality control mechanism that degrades damaged mitochon-
dria) leading to the accumulation of damaged mitochondria which often produce elevated
ROS levels [63]. This, in turn, targets lysosomes and enhances macromolecular damage,
aggravating senescence phenotypes [63].

ROS are common drivers of cellular senescence and trigger all the aforementioned
senescence traits. As analyzed in the above sections, the term ROS encompasses species
with varying chemical reactivity. For instance, O2

•− and H2O2 are not reactive enough to
directly oxidize cellular macromolecules and induce damage. However, in the presence
of labile iron, peroxides can be converted to extremely reactive free radicals such as HO•

and RO• (Figure 1, Reactions (1) and (2)). These free radicals are short-lived and highly
reactive; thus, they attack and oxidize their targets close to the site of their formation
(diffusion-controlled reactivity). Consequently, when peroxides are elevated (oxidative
stress conditions), labile iron can trigger single- or double-strand breakage and oxidative
modifications to DNA bases, oxidative damage to proteins, and peroxidation of lipids [7];
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all these effects can elicit cellular senescence. Moreover, labile iron is not uniformly dis-
tributed within cellular compartments. Lysosomes and mitochondria, organelles that
undergo the most remarkable alterations during senescence, contain higher amounts of
labile iron compared with other cellular compartments [64,65]. The high iron content makes
these organelles extra sensitive in oxidative stress conditions [8,9,66,67]. Considering the
above, the implication of labile iron in the mechanisms of oxidative stress-induced cellular
senescence is a quite reasonable assumption. In the subsequent sections, we discuss the
potential interplay of labile iron, oxidative stress, and senescence and examine curevidence
for the role of labile iron in this cellular process.

4.1. DNA Damage
4.1.1. Activation of the DNA Damage Response Pathway

Nuclear DNA, although bearing hereditary information, is particularly susceptible
to oxidative stress. ROS cause various lesions to DNA, such as single- and double-strand
breakage, and oxidation to purines and pyrimidines [68]. Eukaryotic cells are equipped
with a complex network known as the DNA damage response (DDR), which protects the
genome from detrimental insults [69]. The DDR machinery can detect DNA lesions and
set the cell fate depending on the cell type and the severity of the damage [70–72]. When
genotoxic agents such as ROS trigger DNA damage, the DDR machinery temporarily arrests
cell proliferation and gives time for efficient DNA repair. After the damage is repaired, the
cell exits from the arrest phase and resumes cell cycle progression. However, if the damage
is severe and irreparable, the prolonged DDR activation may cause a permanent cell
cycle arrest and the senescence phenotype, or otherwise may initiate cell death programs
(apoptosis) [70–72].

The DDR initiates with the recognition of the DNA damage by sensor proteins and
the activation of signaling protein kinases such as ataxia-telangiectasia-mutated (ATM) and
ATM- and Rad3-related (ATR) kinases. ATM and ATR phosphorylate histone γ-H2A.X,
which regulates various downstream mediators (such as 53BP1) to coordinate the DDR
machinery, and the downstream kinases CHK1 and CHK2, which ultimately transmit the
damaging signal to p53. The p53 transcription factor regulates the expression of the cyclin-
dependent kinase (CDK) inhibitor p21, leading to cell growth arrest and senescence [73].

Telomere shortening due to cellular replication also results in DDR activation and in-
duction of cellular senescence [70,71]. Interestingly, as it turns out, oxidative stress interferes
with telomere homeostasis, and ROS-induced telomere dysfunction may signal persistent
DDR activation and senescence, which can be either dependent on or independent of
telomere length [43,74–76].

4.1.2. Telomeres and how they signal senescence

Telomeres are specialized structures at the ends of eukaryotic chromosomes essential
for maintaining genomic stability. They consist of tandem nucleotide repeats coated with
a six-member protein complex known as the shelterin [43]. Human telomeres consist of
roughly 5–15 kilobases that terminate in a 3′ single-stranded overhang of approximately
50–200 nucleotides. In humans and mammals, their basic DNA repeat is the hexanucleotide
sequence 5’-TTAGGG-3’ in the strand that contains the 3’-end [77]. The telomeric end folds
back onto itself, forming a lariat-like structure (t-loop), while the single-stranded overhang
invades the telomeric double-stranded region [78]. This highly organized structure, which is
arranged and stabilized via the shelterin proteins, safeguards the single-stranded terminus
from being recognized as a potential breakpoint and the resulting erroneous activation of
the DNA damage response (DDR) machinery [79].

Telomeres have been intimately linked with the onset of senescence [43]. Their length
decreases with each cellular replication in almost all somatic cells of adult organisms,
due to an inability of the replicative polymerases to complete the synthesis at the ends of
linear chromosomes. This phenomenon can be counteracted by telomerase, the specialized
enzyme that compensates for telomere loss by elongating chromosomal ends. However,
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since telomerase is repressed in the majority of human somatic cells, telomeres become
progressively shorter as cells divide, and when tthey get below a crucial length, they cannot
sufficiently bind the shelterin and the telomeric loop destabilizes [74]. This results in the
exposure of their terminus region, which is sensed as a double-strand break and accumu-
lates proteins involved in DDR machinery. The DDR signaling through the induction of
cell cycle inhibitors promotes the stable arrest of the cell cycle, also known as replicative
senescence [70,80].

4.1.3. New Insights into Oxidative Stress-Induced Telomere Shortening
and/or Dysfunction

The initial hypothesis concerning the link between telomeres and senescence was
that the former are merely a “biological clock” that measures mitotic time and stops
proliferation after a more or less fixed number of cell divisions (when telomere length
reaches a certain cutoff point) [43]. This simplistic concept has been switched to a more
complicated perception, as it has become apparent that telomere homeostasis strongly
correlates with oxidative stress, and it was proposed that oxidative stress may contribute to
telomere shortening more than the end-replication problem alone [81,82]. During the past
few decades, several in vitro studies in human cultured cells have revealed that oxidative
stress accelerates telomere shortening and inhibits cell proliferation [76,81,83–85], while
treatment with antioxidants prevents oxidative stress-induced telomere shortening and
extends the proliferative lifespan [81,86]. Moreover, evidence from animal models and
human studies supports the negative correlation between oxidative stress and telomere
length [87]. Remarkably, telomere loss is not solely a stochastic event, since telomeric DNA
is more vulnerable to oxidative damage compared with the bulk of the genome, and this is
due to many reasons.

First of all, the damage that occurs within telomeric regions is less efficiently repaired
compared with elsewhere in the chromosome [71,88,89]. This is mainly because the shelterin
protein-complex coats telomeres, rendering their damage unrecognizable by the DNA
repair enzymes [71,88,90,91]. The unrepaired, and therefore persistent, telomeric damage
causes a prolonged DDR signaling, ultimately leading to permanent cell cycle arrest and
the senescence phenotype [71,88,92].

Apart from being hard to repair, telomeres are also more sensitive to oxidative stress
compared with the bulk of the genome, a feature recently called “TelOxidation” [93].
One main reason for telomeres’ susceptibility to oxidative stress is their high content in
guanine, the DNA base most vulnerable to oxidation. In vitro studies have shown that
under oxidative stress conditions, 8-oxo deoxyguanine (8-oxoG)—the primary product of
deoxyguanine oxidation—is more predominant in telomeric sequences compared with non-
telomeric sequences [85,94]. A recent study in immortalized cells by Fouquerel et al. has
shown that the persistent 8-oxoG induction exclusively within telomeric regions hastened
telomere shortening, impaired cell growth, and triggered replication stress, even though
telomeres are only a minor proportion of the chromosomes [95]. The authors proposed that
the persistent telomeric 8-oxoG induction interferes with telomere replication, aggravating
their shortening.

While telomeric damage can occur through the direct attack of oxidants on DNA,
it may also arise by oxidative modifications of the cellular nucleotide pool [96]. In this
case, the insertion of oxidized nucleotides—particularly the oxidized form of the guanine
nucleotide—inhibits telomerase, preventing further telomere extension [77,97–99]. In this
way, the oxidation of free nucleotides hastens telomere shortening and loss.

An additional threat for telomeres under oxidative stress conditions is the dissociation
of shelterin proteins. 8-oxoG lesions or intermediates of base excision repair in telomeric
DNA reportedly disrupt the binding of the TRF1 and TRF2 (telomere repeat binding factors
1 and 2) proteins, which are essential for telomere stability [100].

Notably, although the majority of studies so far supports that oxidative stress has-
tens telomere shortening and the onset of senescence, recent reports suggest otherwise.
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Barnes et al., have shown that in non-diseased cells, telomeric 8-oxoG formation induced
multiple markers of p53-dependent premature senescence, but remarkably, this was not
accompanied by telomere shortening. Yet, their results suggest that telomeric 8-oxoG
lesions in non-diseased cells activate DDR signaling and enforce p53-dependent prema-
ture senescence by disrupting DNA replication and increasing telomere fragility [75].
Moreover, in vivo experiments confirmed that infiltrating neutrophils in the liver induces
ROS-mediated telomere dysfunction and senescence in neighboring hepatocytes, which
was not accompanied by telomere shortening [76].

4.1.4. The Putative Role of Labile Iron in Oxidative Stress-Mediated DNA Damage and
Cellular Senescence

ROS accumulation can damage DNA and activate the DDR pathways, causing various
responses, including cellular senescence. Evidence in the literature is clear in highlighting
that the intracellular availability of labile iron represents a prerequisite for ROS-induced
adverse effects [11,14,101]. This is because iron catalyzes the conversion of relatively
unreactive peroxides to extremely reactive free radicals that can instantly attack and oxidize
all essential cellular macromolecules, impairing cellular function (see Figure 1 and Reactions
(1) and (2)). Previous in vitro and in vivo studies from our research team revealed that the
diminution of intracellular iron protects against oxidative stress-induced DNA damage
and cell death [101–105]. Given that iron is essential for the generation of extremely
reactive free radicals that can damage DNA (telomeric or non-telomeric), it may well
contribute to oxidative stress-mediated cellular senescence. Recent studies have indicated
that excess intracellular iron accelerates cellular senescence by damaging the DNA via
Fenton chemistry [106]. This process was defined by Sfera et al. as “ferrosenescence” [106].
Moreover, iron levels have been associated with specular changes in p53 activity in mouse
hepatocytes and rat liver [107].

4.2. Protein Oxidation

Apart from DNA damage, impaired proteostasis is another prominent feature of
senescent cells [108]. A well-known cause of proteotoxicity is ROS, which provoke oxidative
modifications leading to protein misfolding and aggregation. ROS may directly attack and
cleave protein backbones, generating protein fragments, or may oxidize protein amino
acids, especially the aromatic and sulfur-containing ones [109]. Oxidative modifications
may also be induced via indirect reactions with reactive intermediates originating from
lipid or carbohydrate oxidation [109,110].

Notably, some types of protein oxidation—for example, certain oxidations of thiol
groups—can be reversed enzymatically. Such oxidation may regulate signaling mechanisms
and are relevant in physiological processes (this is referred to as redox signaling) [11,60,111].
Nevertheless, most types of oxidative damage in proteins cannot be reversed and, since
their accumulation compromises cell function, their elimination is extremely important.
The maintenance of proteostasis is attained through precisely coordinated networks that
rapidly reverse or degrade oxidized proteins [60]. To some extent, non-reversibly oxidized
proteins are degraded by the proteasomal or autophagy–lysosomal systems. However,
when the rate of their formation overwhelms the rate of their degradation, oxidized proteins
accumulate, raising the risk of the formation of insoluble protein aggregates which may
further impair the activity of proteasomal and lysosomal degradation systems [112].

Oxidized proteins are elevated in oxidative stress-related pathologies, aged organisms,
and senescent cells as well [7,60,108,109,113–115]. Although not necessarily indicative of
senescent cells, the accumulation of oxidized proteins and protein aggregates is tightly
related to senescence [7,115]. In agreement with that, protein degradation by proteasomal
and lysosomal systems is affected in senescent cells [7]. Moreover, oxidized proteins form
lipofuscin, a non-degradable aggregate that represents a universal hallmark of senescence
cells, as will be discussed below.
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Although the interactions of labile iron with cellular proteins are ill-defined, there is ev-
idence that some ROS-mediated signaling pathways are dependent on iron availability [11].

4.3. Lipid Oxidation

A large number of existing studies support that senescent cells alter lipid metabolism,
although our knowledge concerning the specific lipid metabolite composition or its con-
tribution to the senescent phenotype is sparse [116,117]. Elevated ROS levels fuel lipid
peroxidation and breakage of lipids, altering the permeability and fluidity of the membrane
lipid bilayer and therefore cell integrity [11]. Increased availability of labile iron favors the
generation of highly reactive lipid radicals (RO•) (see Figure 1B and Reaction (2)), which
can drive detrimental cellular processes, including ferroptosis, an iron-dependent form
of cell death [11]. RO• (like HO•) are extremely reactive and have some very local effects.
Moreover, the breakdown byproducts of lipid peroxidation, mostly reactive aldehydes
such as malonaldehyde and 4-hydroxynonenal, are highly electrophile compounds, and
they easily modify intracellular macromolecules (mainly proteins) by forming covalent
electrophilic addition products. Such highly damaging lipid peroxidation products have
been found in increased levels in cells and biological fluids in ageing and age-related
diseases [59]. Concerning senescence, it has been reported that excess ROS generated from
dysfunctional mitochondria induce lipid oxidative damage and lipid deposits [118,119].
Apart from lipid damage, products of lipid peroxidation are also elevated in senescent
cells [117]. Finally, like proteins, oxidized lipids are also components of lipofuscin, as we
will discuss below.

4.4. Lipofuscin Formation and Accumulation
4.4.1. Lipofuscin: A Non-Degradable Product That Accumulates in Postmitotic and
Senescent Cells

Lipofuscin is a pigmented, non-degradable biological “garbage” of intracellular catabolism,
mainly found within lysosomes but also, in lesser amounts, in the cytosol [120,121]. It can be
conventionally generated in virtually any cell type; however, its levels are nearly undetectable
in normal proliferative cells, probably because its concentration is diluted with constant divi-
sions. Still, lipofuscin progressively accumulates over time in postmitotic cells which no longer
divide, and in cells undergoing senescence [1,121–125].

Despite its name, which implies a lipid structure (lipos is the Greek word for “fat”),
lipofuscin is a heterogenous complex mixture consisting mainly of highly oxidized proteins,
a lesser amount of lipids, and a few carbohydrates, ribonucleic acids, and metals [26,112],
particularly iron ions [66]. The heavy cross-linking of the macromolecules within lipofuscin
makes it difficult to identify its exact composition. However, there is strong evidence for
the partial mitochondrial origin of lipofuscin [61,63,112,126].

An issue of debate is whether lipofuscin accumulation contributes to the initiation of
senescence or whether it is just a mere consequence of this process. However, the finding
that synthetic lipofuscin can by itself induce cellular senescence in human fibroblasts argues
for a causal role in the process [127]. In any case, lipofuscin accumulation inhibits both
proteasomal and lysosomal degradation systems, deteriorates cellular functionality, and is
inversely correlated with longevity [128,129].

4.4.2. Mechanisms of Lipofuscin Formation: The Role of Intracellular Iron Homeostasis
and Oxidative Stress

Lipofuscin originates via oxidation and polymerization reactions of various cellular
macromolecules and structures [26,121]. A requirement for the initiation of such devas-
tating reactions is the generation of highly reactive oxidants. Intensive and/or prolonged
oxidative stress leads to the formation of over-oxidized non-degradable materials [60,112]
which finally aggregate, polymerize, and accumulate inside the cells, aggravating the rate
of lipofuscin accumulation [61].

Lipofuscin resides primarily within lysosomes, acidic organelles with high-level de-
generative potential that recycle non-essential, or eliminate harmful, cytoplasmic macro-



Antioxidants 2023, 12, 1250 13 of 21

molecules and organelles delivered to them via the autophagy, phagocytosis, and endo-
cytosis processes [130]. Since many of these materials contain iron, lysosomes are rich in
this potentially harmful transition metal. The presence of labile iron and low pH make
lysosomes ideal for Fenton-type reactions [131]. The generated highly reactive free radicals
induce chain oxidation of lysosomal components leading to lipofuscin formation. This is
supported by the observation that iron status regulates lipofuscin accumulation in rat heart
myocytes cultured under oxidative stress conditions [132].

4.5. Alterations in Mitochondria

Numerous studies highlight that senescent cells show remarkable alterations in mito-
chondrial function, structure, and dynamics [133]. In different models of cellular senescence,
including oxidative stress-induced senescence, mitochondria become hyperfused and elon-
gated, while their mass is increased [83,134–137]. Mitochondria are also less efficient in
producing ATP and show increased proton leak and decreased mitochondrial membrane
potential [83,134,138–140]. In addition, the autophagic degradation of dysfunctional or su-
perfluous mitochondria within lysosomes (mitophagy) is impaired in senescent cells [141].
As a result, dysfunctional mitochondria which produce excessive ROS accumulate. It has
been reported that mitochondrially derived ROS aggravate senescence by inducing genomic
damage, particularly at telomeric regions, while interventions that diminish mitochondrial
ROS hamper telomere shortening and extend the replicative lifespan [83,86,118]. Moreover,
mitochondrial ROS are essential for the establishment of the senescent phenotype [83,134].
Particularly, excess ROS production from dysregulated mitochondria potentiates telom-
eric DNA damage and induces a prolonged DDR activation which is both necessary and
sufficient for the establishment of stable cell growth arrest and senescence [134]. Mitochon-
drially derived ROS in senescence do not influence solely the genome but induce damage
to other intracellular macromolecules as well. Recently, oxidatively modified proteins
have been observed in the mitochondria of senescent cells [142], while ROS derived from
dysfunctional mitochondria have been reported to induce lipid oxidative damage and lipid
deposits [118,119]. Finally, mitochondrially derived ROS from senescent cells have been
reported to spread senescence to neighboring healthy cells, through the induction of a DDR
response [143,144].

Mitochondria contain high amounts of iron, up to 20–50% of the total cellular iron in
some cell types [145]. Within the mitochondria, iron is primarily utilized for the biosyn-
thesis of heme and Fe-S clusters; excess iron can be stored in the organelle-specific form
of ferritin [33]. Iron accumulates in mitochondria with age, leading to mitochondrial dys-
function, increased oxidative damage, and cell death [146]. Similarly, mitochondrial iron
overload correlates with oxidative stress and apoptotic cell death. However, evidence for
the potential role of mitochondrial iron in senescence is sparse. It has been reported that
frataxin deficiency, which is known to induce mitochondrial iron accumulation, provokes
mitochondrial dysfunction, oxidative stress, and cellular senescence [147]. Moreover, a
recent study in endothelial cells revealed that loss of neuropilin-1, a protein widely known
for its role in angiogenesis, induces mitochondrial iron accumulation and iron-dependent
oxidative stress, which results in mitochondrial dysfunction and senescence [148]. Addi-
tionally, treatment with mitoTEMO, a mitochondria-targeted antioxidant compound, or
the iron-chelating drug deferoxamine (DFO), inhibited mitochondrial ROS production and
protected against cellular senescence [148].

4.6. Alterations in Lysosomes

Another common trait of senescent cells is alterations in lysosomal morphology and
function. Lysosomes increase in number and size in senescence [4,8,63]. Moreover, as
already mentioned, lysosomes contain high amounts of iron, which favors Fenton reac-
tions [63,64,149] and makes these organelles ideal sites for the generation of lipofuscin
t [128,131]. Lysosomal lipofuscin impairs autophagy and lysosomal degradation, further
aggravating its formation and accumulation [128]. Moreover, lipofuscin seems to be an-
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other major intracellular source of ROS (together with mitochondria) in senescent cells,
as the presence of iron within its structure catalyzes the formation of highly reactive free
radicals [66,67]. Thus, lipofuscin itself can further oxidize cellular macromolecules, which
has been reported to be a common trait of senescent cells [66]. Remarkably, as mentioned
above, lysosomal dysfunction results in decreased mitophagy and the accumulation of
damaged and dysfunctional mitochondria which produce elevated levels of ROS [63].
Mitochondrially derived ROS in senescent cells target intracellular macromolecules (DNA,
protein, lipids) and organelles (including lysosomes), forming feedback loops that potenti-
ate macromolecular and organelle damage and establish senescence [8,67].

5. Conclusions

Cellular senescence is a cell state characterized by a generally irreversible cell cycle
arrest [1]. This cell program plays beneficial roles in several physiological and pathological
processes [2,5]. However, the prolonged accumulation of senescent cells within tissues and
organs can be maladapted, contributing to a wide spectrum of age-related diseases [2,3,6].
Therefore, understanding the mechanisms that govern the initiation and establishment of
cellular senescence, and ways to manipulate this process, is of major importance for biology
and medicine.

ROS are ultimately linked with cellular senescence. Elevated ROS trigger senescence
by inducing macromolecular and organelle damage (Figure 4). Moreover, senescent cells
—regardless of the initiation signal—often accumulate dysfunctional mitochondria which
produce increased levels of ROS [63]. Mitochondrially-derived ROS are both necessary and
sufficient for the establishment of a stable cell growth arrest and senescence [134].

ROS are free radicals or molecules produced by the incomplete reduction of O2. These
species exhibit varying chemical reactivity and have pleiotropic effects on cells [10]. One-
electron reduction of O2 generates O2

•−, which is usually the first ROS to be formed. O2
•−

is reduced into H2O2 by the action of SOD. Neither O2
− nor H2O2 is reactive enough to

oxidize and induce damage to cellular macromolecules or organelle constitutes. Moreover,
H2O2 plays an essential role as a physiological signaling agent. Yet, when labile iron is avail-
able, it can be converted via Fenton-type reactions into HO•, which is capable of oxidizing
indiscriminately, and with high-rate constants, almost all cellular macromolecules [11,14].

Evidence in the literature is clear in highlighting that labile iron represents a require-
ment for ROS-induced adverse effects [11,14]. Moreover, we have previously demonstrated
that the diminution of intracellular iron protects against oxidative stress-induced DNA
damage and attenuates apoptotic cell death [101–105]. As such, the implication of iron in
the mechanisms of oxidative stress-induced cellular senescence seems quite possible. In the
literature, there is sparse evidence for the implication of iron in cellular senescence [106,150].
Recently, it was proposed that excess intracellular iron accelerates DNA damage via Fenton
chemistry, and blocks genomic repair systems, causing cellular senescence [106]. More-
over, it was reported that iron levels regulate cellular senescence by altering p53 protein
levels in mouse hepatocytes and rat liver [107]. In another recent study, the diminution of
intracellular iron with the iron-chelating drug deferoxamine (DFO) prevented oxidative
stress-induced cellular senescence of human-endometrium-derived mesenchymal stem
cells (hMESCs) [151]. Evidence also exists for the implication of mitochondrial iron in
oxidative stress-induced cellular senescence. It has been reported that the accumulation of
iron within mitochondria induces iron-depended oxidative stress, resulting in mitochon-
drial dysfunction and cellular senescence [147,148]. Apart from mitochondria, lysosomes,
as another iron-rich organelle [64,65], play a central role in oxidative stress and cellular
senescence [8,67]. The presence of iron ions favors the generation of reactive free radicals,
leading to the gradual accumulation of lipofuscin, which represents a universal hallmark
of senescence [63,64,149]. Moreover, lipofuscin itself is a major source of intracellular
oxidants, as it contains iron within its structure [66,67]. At the same time, the progressive
deterioration of lysosomal function reduces mitochondrial turnover, resulting in increased
mitochondrial ROS production in senescent cells [8,63,67]. Mitochondrially derived ROS,
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in turn, target intracellular macromolecules as well as lysosomes, forming feedback loops
that potentiate cellular damage and aggravate cellular senescence [8,67].

On the other hand, there is evidence that iron accumulation is a consequence of cellular
senescence regardless of the initiator stimuli (irradiative, replicative, or oncogenic) [152,153].
Masaldan et al. demonstrated that senescent cells display changes in the levels of iron
homeostasis proteins, accompanied by the excessive accumulation of intracellular iron (up
to 30-fold) [152]. Although the total level of intracellular iron increases, the senescent cells
were remarkably highly resistant to ferroptosis, a type of iron-dependent cell death. This
is probably because ferritin, the major intracellular iron-storage protein, also increased in
senescent cells. Increased ferritin levels were driven by impaired lysosomal degradation of
ferritin within lysosomes, a process known as ferritinophagy [152].

The aforementioned data strongly suggest that intracellular iron is involved in oxida-
tive stress-induced senescence, yet its role is complicated, and further studies are required
to unveil the precise roles of iron in this process. Targeting labile iron with iron-chelating
drugs or diet-derived compounds with iron-chelating capacity has been shown to be an
effective strategy to counteract the adverse effects of oxidative stress [101–105,154–159].
Thus, modulating labile iron might represent a hitherto unappreciated approach to prevent
oxidative stress-induced cellular senescence.
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Figure 4. A summary of intracellular damage known to accumulate in cellular senescence caused
by ROS. ROS induce oxidative damage to all essential macromolecules (DNA, protein, lipids) and
organelle constitutes. Among organelles, mitochondria and lysosomes are more sensitive to oxidative
stress conditions because of their high iron content. During senescence, lysosomes accumulate
lipofuscin and display impaired autophagic degradation, diminishing mitochondrial turnover. Dys-
functional mitochondria accumulate and often produce excess ROS, further targeting intracellular
macromolecules and lysosomes. These feedback loops potentiate cellular damage and aggravate
cellular senescence. Iron most likely plays an essential role, as it catalyzes the generation of highly
reactive free radicals able to induce oxidative damage to cellular constitutes. The figure was partly
generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons
Attribution 3.0 unported license.
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